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Abstract—In this article, we introduce our pilot research on
finger movement detection based on the data collected by the
Electromyography (EMG) sensor that is placed on the forearm to
sense the muscle movements. The EMG sensor is battery powered
and connects to the smartphone app through Bluetooth. The size
of the EMG sensor is similar to a regular adhesive bandage for
minor wound care. As it can be easily covered by sleeve, if we can
successfully use them to accurately detect each individual finger
movement, there will be many interesting applications such as
playing a visual music instrument. We studied a machine learning
model for processing the unfiltered EMG signals generated by
the muscle movement when we move each individual finger. The
current average accuracy of five finger movement detection is
about 87%.

Index Terms—Signal Processing, Feature extraction, Dimen-
sion reduction, Machine learning.

I. INTRODUCTION

A critical component of most recent human-machine inter-
action (HCI) devices is Myoelectric control systems, a system
that receives the Electromyography (EMG) signal originated
from muscle movement. Most of the existing studies are
focused on EMG signal based gesture detection [1]. Though
using EMG signals for accurately detecting individual finger
movements is more challenging than gesture detection, it is a
necessary precursor to control a prosthetic hand for the tasks
such as typing. The success of finger movement detection can
also extend the EMG application to the areas such as virtual
music instrument play, secure communication (sending morse
code), authentication, and key pairing.

Fig. 1 shows the nano EMG sensor we used to capture the
muscle signal when an individual finger is moving and the
Android app for data collection. Each individual finger has
two movement pattens. One is closed for half a second and
open for half a second, the other is closed for one second and
open for one second. We target on detecting both which finger
is moving and what is the movement patten.

To achieve the goal, we conduct research in two steps: (1)
Extract each movement from the raw signal, via which we can
detect the movement patten, and (2) Individual finger detection
from each extracted movement signal. In the rest of this article,
we will introduce these research followed by the evaluation
results.

II. MOVEMENT EXTRACTION

The EMG signals are acquired from epidermal electronic
systems. The collected EMG signals are noisy and distorted.

Fig. 1: EMG Sensor and Data Collection

As the signal’s quality and the accuracy of extracted move-
ments significantly affect the extracted features, which will
be used for individual finger detection in the next step, we
first send the signals to a high pass filter to eliminate the
noise caused by electrode-skin impedance and continuous
body movements. We use Butterworth high pass filter [2] with
a corner frequency of 20 Hz [2]. Then, to extract each finger
movements from the filtered signals, we designed a finger
movement detection system, whose working flow diagram is
shown in Fig. 2.

Fig. 2: Movement Extraction Work Flow

The EMG Envelope Detection step returns the upper en-
velopes of the filtered EMG sequence. The envelope is the
magnitude of the analytic signal computed by Hilbert function.
We, then, have the signal without any ripple. There are still
some sharp variations in the envelope of the EMG signal. It can
cause an error in duration calculations. Therefore, the signal
envelope is smoothed in the second step. The Smooth function
will smooth the data in the column vector by using a moving
average filter. In the step of Thresholding, the samples turn to
1 when they are higher than threshold, otherwise they turn to



0. The threshold value is heuristically set by the average value
of the EMG signal sequence. By multiplying the thresholded
sequence as a duration window, we can access to ‘Closed
Fingers’ and ‘Open Hands’ samples separately. We can, then,
detect the movement patten.

III. INDIVIDUAL FINGER DETECTION

To detect which finger is moving, we first extract features
from each movement signal. These features should contain the
most descriptive information about the signal and their size
should be reduced in dimension compared to the input signal
as a whole. We extracted 17 features from the signal.

We, then, use a machine learning based classifier to iden-
tify the individual finger based on the extracted features.
Six popular machine learning algorithms are examined for
classification including Convolutional Neural Network (CNN)
[3], Deep Neural Network (DNN) [3], k-Nearest Neighbor
(KNN) [4], Logistic regression (LR) [5], Quadratic Discrim-
inant Analysis (QDA) [6], and XGBoost [7]. We focus on
finding out a selection of classification system elements (i.e.,
feature set, classifier, window characteristics, dimensionality
reduction method) for the best performance of individual finger
detection.

We performed three rounds of data collection on our testers,
giving us three data sets to study and develop a model specified
to our testers. These data were first prepossessed for movement
extraction then used to train and test a series of classification
systems, each of them consists of a different combination of
system element choices. Considering the computation power
difference of the finger detection devices, we designed a
single-layer classifier and a two-layer classifier for less pow-
erful systems and powerful systems, respectively.

1) Single Layer Classifier: By using StratifiedKFold to split
the whole data set with a fixed random seed (random state
= 1), we ran fivefold cross-validation on each model. We
applied Principal Component Analysis (PCA), which is used
for dimension reduction, to transform the data set into a new
subspace, which makes it more separable. After components
are received, we feed the data to the classifiers to do cross-
validation. Note that we removed the features that are zeroed
out before running PCA. We compared the result of different
classifiers with/without using PCA in Table I.

TABLE I: Single Layer Classifier Performance Comparison

5 class classifier 5 fold cross validation
total accuracy(%)

Classifier Without
Using PCA Using PCA

XGBoost 75.4 77.8
LR 78.03 79.5

CNN 79.6 79.03
DNN 79.9 79.03
QDA 70 79.1
KNN 70.2 69.9

By using PCA, we can combine the information to make
them more separable and thus yield better results in classi-
fication [8]. Through a series of evaluations, the results and

the distribution of the data showed us that the quality and the
distribution of the data generally have more impacts on the
classification’s accuracy than different classifiers.

2) Two-layer classifier: From the confusion matrix of dif-
ferent classifiers and the evaluation results, we observed that
the Middle finger has the lowest detection accuracy. To further
improve the performance, we designed a two-layer classifier.
We have a binary classifier between the Middle finger and the
rest of the fingers at the first layer. At the second layer, we have
a 4-class classifiers for detecting Thumb, Index, Ring, and
Pinkie. TableII shows the average detection accuracy among
the three data-set while using different classifiers. We can
observe that the best two-layer classifier is DNN with PCA
at binary layer and CNN without PCA at 4-class layer. The
best average accuracy among three data sets is about 87%

TABLE II: Two-Layer Classifier Performance Comparison
Binary Classifier 5 fold cross validation 4 class classifier 5 fold cross validation

Classifier Without
Using PCA Using PCA Classifier Without

Using PCA Using PCA

XGBoost 82.8 83.06 XGBoost 84.8 86.23
LR 85.7 85.8 LR 86.7 85.8

CNN 86 84.3 CNN 87.2 86.9
DNN 80.4 87.3 DNN 80.4 85.9
QDA 77.5 75.6 QDA 80.3 83.1
KNN 79.3 79.4 KNN 81.2 80.9

IV. CONCLUSION AND FUTURE WORK

In this article, we briefly introduced our pilot work on
detecting finger movement via using nano EMG sensors.
We designed an effective system to detect individual finger
movement and its movement patten. The current best model
is a two-layer classifier, where DNN with PCA at binary layer
and CNN without PCA at 4-class layer. Since the classifiers’
performance vary along with the change of the quality of
received signal, in the future, we will work on improving the
quality of the captured signals. Besides, we will focus on using
voting models, such as Ensemble, to improve the detection
accuracy.
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